Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 03-022

Multi-Constraint Mesh Partitioning for Contact/Impact
Computations

George Karypis

May 05, 2003

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
05 MAY 2003 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

Multi-Constraint Mesh Partitioning for Contact/l mpact Computations £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army High Performance Computing Resear ch Center ,Department of REPORT NUMBER

Computer Science and Engineering,University of
Minnesota,Minneapolis,M N,55455

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1

Multi-Constraint Mesh Partitioning for Contact/Impact
Computations*

George Karypis
karypis@cs.umn.edu

Department of Computer Science & Engineering/Army HPC RegeCenter
University of Minnesota
Technical Report 03-022

Last updated on May 5, 2003 at 11:14am

Abstract

We present a novel approach for decomposing contact/ingquexputations in which the mesh elements come
in contact with each other during the course of the simutatiffective decomposition of these computations poses
a number of challenges as it needs to both balance the cotigmstand minimize the amount of communication
that is performed during the finite element and the contaatckephase. Our approach achieves the first goal by
partitioning the underlying mesh such that it simultanépbslances both the work that is performed during the
finite element phase and that performed during contact lsgédrase, while producing subdomains whose boundaries
consist of piecewise axes-parallel lines or planes. Therskgoal is achieved by using a decision tree to decompose
the space into rectangular or box-shaped regions thatioargatact points from a single partition. Our experimental
evaluation on a sequence of 100 meshes, shows that this q@@eaap can significantly reduce the communication
overhead over existing algorithms.

Introduction

In order for mesh-based scientific simulations to be effebtiexecuted on a wide variety of parallel architectures we
need to distribute the underlying finite element meshes grttmprocessors so that (i) the computations are balanced,
(i) the interprocessor communication is minimized, ang the cost of redistributing the mesh (in the context of
adaptive mesh computations) is minimized. It has been rézed in recent years that this can be effectively achieved
by using graph-partitioning and repartitioning algorithf@8, 9, 8, 34], and a new class of partitioning algorithms ha
been developed based on the multilevel paradigm [3, 11,9,729, 35] that produce high-quality partitionings, are
very fast, and can scale to graphs containing several msllaf vertices [10, 19, 15, 17]. Moreover, efficient parallel
formulations of these algorithms have been developed fribiuted-memory parallel computers [22, 33, 18, 20],
which are capable of scaling to thousands of processorsantitign meshes with billions of elements.

*This work was supported by NSF ACI-0133464, CCR-9972518;#986042, ACI-9982274, and by the Army High-Performancenputing

Research Center under contract number DAAD19-01-2-0014.

In its simplest form, the graph-partitioning problem foes®n computing &-way partition of a graph such that
the edge-cut is minimized and each partition has an equabauof vertices (or in the case of weighted graphs, the
sum of the vertex-weights in each partition are the samep tékk of minimizing the edge-cut can be considered
as theobjectiveand the requirement that the partitions will be of the sarme san be considered as tbenstraint
In addition, more generahulti-constraint[16] and multi-objective[31] instances of the graph-partitioning problem
have also been developed that can compute partitioningsithaltaneously balance multiple weights associated with
the vertices while minimizing multiple objectives asstethwith the edges. Single-constraint and single-objectiv
graph partitioning is used to distribute static mesh-bgsasllel scientific simulations, whereas multi-consttain
multi-objective graph partitioning is used to distribuéeléptive) multi-phase and multi-physics simulations [84.

Despite the success of multilevel partitioning algorithamgl the recent advances in multi-constraint and multi-
objective partitioning problem formulations, there an# atnumber of important scientific problems that cannot be
effectively parallelized by these algorithms. One suchhgxda are the scientific simulations in which the mesh ele-
ments come in contact with each other and are routinely pedd in the context of simulations that study vehicle
crashes, material deformations, and projectile-targeefation. Most of the existing multilevel partitioninggat
rithms cannot effectively decompose these types of sinaunatas they ignore the underlying geometry and produce
subdomains that incur high-communication overheads duhie contact-search phase of the computation. For this
reason, an alternative approach has been developed thptitesra different, geometry-aware decomposition for the
contact-search phase [27, 2]. Even-though, this appraaefdctive in reducing the communication overhead associ-
ated with contact-search, it requires a rather expendiv®-all personalized communication step in order to sfen
information between the two decompositions.

In this paper we present a new approach for partitioning artbpming contact/impact computations on parallel
computers that reduces the communication overheads afrexapproaches while ensuring that the overall computa-
tion remains well-balanced. Our algorithm computes a rudgtistraint partitioning that leads to subdomains whose
boundaries consist of piecewise axes-parallel lines argdaand uses a binary tree to partition the space covered by
the mesh into disjoint axes-parallel rectangles or boxesseteafs contain surface nodes from a single subdomain.
Our experimental evaluation on a real simulation congistiha sequence of 100 meshes shows that the resulting
algorithm leads to a substantial reduction in the overathamh of data that needs to be communicated.

The rest of this paper is organized as follows. Section 2igeogome definitions and background information on
graphs, graph partitioning, and contact/impact computati Section 3 surveys some related research on partigionin
contact/impact computations. Section 4 provides an ogendf the partitioning approach that we developed and
describes the algorithms used for its different phasestid®es provides an experimental evaluation of the resulting
algorithm and compares it against previously developedrsels. Finally, Section 6 offers some concluding remarks
and describes directions along which our approach can beefumproved.

2 Background Information

2.1 Definitions

Given a weighted undirected gragh= (V, E) a decomposition o¥ into k disjoint subset¥1, Vo, ..., V, such that
Ui Vi =V is called ak-way partitioningof V. We will use the termsubdomairor partition to refer to each one of
thesek sets. Ak-way partitioning ofV is denoted by a vectdP such thatP[i] indicates the partition number that
vertexi belongs to. A partitioning is said twutand edge, if its incident vertices belong to different partitionsh&
edge-cubf a partitioningP, denoted by EdgeCU®) is equal to the sum of the weights of the edges that are cut by
the partitioning. Thepartition weightof theith partition, denoted bw (V;) is equal to the sum of the weights of the
vertices assigned 1. Thetotal vertex weighof a graph, denoted by (V) is equal to the sum of the weights of all
the vertices in the graph. Thead-imbalanceof ak-way partitioningP, denoted by Loadlmbalan¢®) is the ratio of
the highest partition weight over the average partitionglvgi.e., max (w(V;))/(w(V)/K).

The notions of partition weight, total vertex weight, anddeimbalance can be extended to cases in which each

vertexv is assigned a vector @h weights, that isw(v) = (w1(v), w2(v), ..., wn(v)). Specifically, the partition
weight of theith partition with respect to thg¢th component of the vertex-weight vectors, denotedulyV;) is
equal toy_, .y wj(v). The total vertex weight of a graph with respect to ftte component of the vertex-weight
vectors, denoted by (V) is equal)_, ., wj(v). The load-imbalance of k-way partitioningP with respect to the
jth component of the vertex-weight vectors, denoted by LmidlancéP, j), is max(w;j(Vi))/(w;j(V)/K).

Given a finite-element mesh, its correspondimaylal graphis obtained by representing each node of the mesh
via a vertex and connecting two vertices via an edge, if tliere corresponding edge in the mesh. Similarly, its
correspondingdual graphis obtained by representing each element of the mesh by exvartd connecting two
vertices together if their corresponding elements shaexge (in 2D) or a face (in 3D).

2.2 Overview of Different Graph Partitioning Problems

Three distinct graph-partitioning problem formulatiorevl been used to map mesh-based computations onto the
processors of a parallel computer. These aresthdc graph partitioning the graph repartitioning and themulti-
constraint, multi-objective graph-partitionif§, 8, 34].

The input to the static graph-partitioning algorithms is @eighted undirected grap@ = (V, E). The weight on
the vertices correspond to the (relative) amount of contmutaequired by the corresponding mesh node/element,
whereas the weight on the edge corresponds to the (relativedint of data (or communication time) that needs to be
exchanged in order for the computation at each mesh nodedaldo proceed. The goal of the static graph-partitioning
problem is to compute k-way partitioningP, such that for a small positive numberLoadlmbalanceP) < 1+ ¢
and EdgeCutP) is minimized. Static graph partitioning is used to map tiiadal static single-phase simulations onto
the processors of a parallel computer.

The input to the graph repartitioning algorithms is similarthat for static graph-partitioning algorithms, but as
their name suggest, there already exists an initial pamiitiy of the graphPy. However, this partitioning may not be
balanced or it may have a very high edge-cut. The goal of thphgrepartitioning problem is to compute&kavay
partitioning P such that Loadimbalan¢E) < 1 + ¢, EdgeCutP) is minimized, and the overlap between the old
and the new partitioning is maximizeidg., maximize the number of verticesfor which P[v] = Py[v]. The second
objective of the graph repartitioning problem is to enshet adaptive computations do not spend a prohibitivelyearg
amount of time in redistributing the data in order to adhertné new partitioning.

The input to the multi-constraint multi-objective grapritioning algorithms is a graph whose vertices and
edges have a vector of weights associated with them. Thatash vertexv has a weight-vectow (v) of size
g, i.e,, w) = (wi(v), w2(v), ..., wq(v)), and each edge has a weight-vectow(e) of sizer, i.e., w(e) =
(w1(e), wa(e), ..., wy(e)). The goal of the multi-constraint multi-objective graphrtieoning problem is to com-
pute ak-way partitioning of the grap® such that Loadimbalan¢B, j) <1+ efor j =1,...,q, while minimizing
an objective function that is defined over theomponents of the edge-weight vectors of the edges thateing b
cut by the partitioning. This multi-constraint multi-olojése partitioning problem formulation can be used to baéan
multi-phase and multi-physics simulations in which dur@egch iteration the actual computation is performed in a
number of phases with an explicit synchronization step betweach phase, or compute partitionings that simultane-
ously balance the amount of computations assigned to eatitiqggeand the amount of memory that is required by the
corresponding elements.

Our discussion on partitioning problem formulations hasrbprimarily focused on edge-cut based objectives.
However, other objectives such as the total communicatiduwe [7] can also be used without affecting the algorith-
mic issues involved, and they can be easily incorporatedigtieg multilevel partitioning algorithms [15].

2.3 Overview of Contact/Impact Computations

Each iteration of contact/impact simulations is usuallynposed of two phases. During the first phase, traditional
finite difference/element/volume methods are applied eretitire domain and in the second phase, there is a search to

determine whether or not the surface elements of the meghdwewe in contact and penetrated each other. Once such
contacts have been determined, the positions of the affestsh elements are corrected, the elements are deformed,
and the overall simulation progresses to the next iteration

The actual contact detection is usually performed in twpssf6, 6, 26, 4, 5]. In the first step, the pairs of surface-
elements that are sufficiently close to each other so thgtdhe potentially be in contact are determined, whereas in
the second step, the exact locations of the contacts/ioets (if any) between these candidate contacting sisface
are determined. These two steps are often caletlal searchandlocal search A number of different algorithms
have been developed for local search and are in use in differeduction codes. In this paper we only focus on the
global search phase as it is critical for ensuring the ol/peahllel scalability of these methods. Note that the exact
details of the local search phase do not affect the approsethto perform the global search.

For the discussion in the rest of this paper we will use thassurface elementsr contact element® refer to the
set of elements that need to be searched for contacts andswa@shat these elements have been identified as such
by the application. We will use the terngentact nodescontact pointsor surface nodeso refer to the set of mesh
nodes that belong to surface elements. We will assume thigigdeontact search we are only interested in identifying
contacts between surface elements and not contacts beswdaoe and non-surface elements.

3 Related Research

A number of different approaches have been developed fditipaing contact/impact computations. These ap-
proaches can be broadly categorized into two groups bas¢dedype of problem that they are solving. The first
group contains methods that are designed to address pratdésmnces in which the portions of the meshes that will
end-up getting in contact with each other are known a primricen be accurately estimated), whereas the second
set of approaches are designed to handle cases in which noriakppowledge about contacting surfaces is known.
The second class of contact/impact problems are more dametare the type of problem instances that this paper is
focusing on.

Most of the methods for the first type of contact problemstifian the underlying mesh such that the portions
of the mesh that contain the to-be-contacting surfaces ssigreed to the same (or a small number of) processors.
This partitioning is usually done by using a graph to modelriesh and the sets of contacting surfaces by creating
additional edges between the surface elements that cantiadliecome in contact. Using such a graph model, then
the desired partitioning is obtained by using a traditiomad-constraint graph partitioning algorithm that balasce
both the mesh- and the surface elements assigned to ea@dsgooc Since the resulting partitioning minimizes the
edge-cut, such an approach tends to place contacting swgfaments on the same processor [12].

Probably, the most efficient method to deal with the secoasischf contact problems is that developed by [27, 2].
This approach distributes the overall computations byquering two different partitionings. In the first partitiorg,

a traditional multilevel graph partitioning algorithm ised to evenly distribute the entire mesh, whereas in thenseco
partitioning, a recursive coordinate bisection (RCB) athpon is used to evenly distribute only the surface elements
Using these two partitionings, this approach ensures tigabverall computation will be balanced. Moreover, since
the surface-elements are partitioned using a geometraritiign, the communication overhead during the contact-
search phase of the algorithm is reduced, as it is propa@itiorthe number of elements along the partition boundaries.
Also, since during the course of the simulation, the posgiof the contact nodes changes, the above algorithm
recomputes the RCB-based partitioning of the contact paiéach iteration and moves the contact points accordingly
To minimize the cost of this redistribution overhead, thidlw-up partitionings are computed by modifying the
previous RCB patrtitioning along the same spirit of the gregprartitioning algorithms described in Section 2.2. In the
remainder of this paper, we will refer to the above methoda$i_+RCB algorithm.

The key to the effectiveness of the ML+RCB algorithm is thet faat it uses the best possible partitioning for each
one of the two phases. However, because these two pantiigire de-coupled, the same surface node can reside at
two different processors. That is, the processors resplerfsir performing the finite element-based computatiors an

the contact-detection-based computations of a partisuldace node can be different. As a result, prior to each one
of the two computational phases, an all-to-all communizabtperation is required to send the updated information
for each surface node between the two partitionings. Depgrah the relative size of the surface mesh to the rest of
the subdomain, such a scheme may incur a high communicatevhead.

4 Partitioning for Contact/Impact Computations

From the nature of the computations performed in the coursemerical simulations involving contact and impact
(described in Section 2.3), we can see that their overaltstre is similar to a two-phase computation, in which
the first phase involves the entire domain and the seconcepheasives only the surface elements and their nodes.
Consequently, if we model this mesh as a graph with two vesteights—the first weight modeling the computa-
tions performed during the first phase and the second weigteting the computations performed during the second
phase—then the existing multi-constraint partitioningoaithms described in Section 2.2 can be used to load-balanc
the overall computation. This is the key idea behind our agghn for effectively parallelizing contact/impact compu-
tations and as such, it eliminates the need to transfer riofteination between the two different partitionings, as is
required by ML+RCB.

However, even though this multi-constraint based appredttachieve the desired load balance, care must be
taken to ensure that the overall approach does not lead ésgixe communication overheads during the global search
phase of contact detection. On serial computers, globatksémndone efficiently by representing each contact surface
by its bounding box and using various volume partitioninggpatial indexing) techniques to quickly narrow down
the search space. In the case of a parallel system and agpetitmesh, the global search is usually accelerated
by using a similar technique as follows [23, 24, 2]. Each subdlin is represented by its bounding box and every
processor receives a copy of all the bounding boxes of thewssubdomains. Then for each surface element that
a processor stores, it determines the subdomain boundixgstihat it intersects with or is fully contained in it, and
sends the elements to all of these processors. Finally, gacessor proceeds to perform global search using the
surface elements that it stores and the surface elemenis theeived in the previous step. Essentially this appnoac
uses the bounding boxes of the subdomains filtea to determine whether or not a particular surface element can
come in contact with the elements that are stored at anatbelosnain. The overall number of elements that need to be
communicated is proportional to the number of surface efesthat are at the intersection of the various subdomain
bounding-boxes. Since the mesh is partitioned using a timstcaint partitioning algorithm that does not take into
account the underlying geometry, there are no guarantetteeategree of overlap of the various subdomains, which
can lead to excessive communication. Also note that mosteoéxcessive communication overhead are ddalse-
positivesi.e., a particular surface element is sent to a processor, éoergh none of the locally stored elements of
that processor will identify it as a “hit” for its global sedrphase.

In principle there are two ways that can be used to addresalibee problem. First, we can develop multi-
constraint graph partitioning algorithms that take intoamt the underlying geometry and lead to subdomains whose
corresponding bounding boxes have as small of an overlapssilybe. Second, we can develop better parallel global
search algorithms that reduce the number of false-positiVkis can be done by using different geometric descriptors
for the areal/volume that is covered by the elements assigpnegarticular subdomain than just its bounding box. In
particular, if the area/volume that is covered by these rifgscs asymptotically approaches the area/volume of the
actual subdomain, then the overlap between the differdsttuains will be asymptotically reduced to zero, and thus
minimize the number of false-positives.

Our algorithm uses both of these approaches to reduce thersarabcommunication that is required during the
global search phase of contact detection. It computes a-gasistraint partitioning that leads to subdomains whose
boundaries consist of piece-wise axes-parallel linesamgs, and uses a binary tree to partition the space covered by
the entire mesh into disjoint axes parallel rectangles aebavhose leafs contain surface elements from a single sub-
domain. Details on how the geometric descriptors are coctstd, how the multi-constraint partitioning is computed,

- L]
o] m . [0}) -
g - n n -
e e n
& o m ® -
7 . n | = [
Bl .
6— 0 o o
K] — °] °
. 8 50 G) . ®| ©
>
Loale . . 4 Yoale ©
. — [
b A A A 3+ . A Y
A A — A A
A A 4 2 A A 4
A A A — A A A
A 1+ A
A
(A) ®
T T T T T T LI N R B B) B
1 2 3 4 5 6 7 8 9
X-axis
(a) Partitioning of the contact points. (b) Partitioning of the space. (c) Associated Decision Tree

Figure 1: An example three-way partitioning of 45 contact points. (a) Shows the partitioning of the 45 contact points into three
partitions. (b) Shows the description of the various subdomains as a set of axes-parallel rectangles. (c) Shows the underlying
decision tree description of these descriptors.

and various issues involved with incrementally updating itiformation are provided in the rest of this section.

Note that our partitioning algorithm operates on the nodapp of the mesh and for this reason our discussion
throughout this section will focus on the problem of pastiing the nodal graph of the mesh. However, the actual
global search is done with respect to the surface elemette afiesh and details on how the nodal partitioning is used
to perform that search is also provided.

4.1 Subdomain Geometric Descriptors

The best way to describe the method that we use to represeatrdla/volume occupied by each subdomain is via
an example. Figure 1(a) shows such a hypothetical exam@e?@f problem in which 45 contact points have been
partitioned into three subdomains. The subdomain that paicth belongs to is represented by the shape of each point
(i.e., triangle, circle, and square). Given this partitioniagr algorithm then proceeds to partition the underline spac
into rectangular regions as depicted in Figure 1(b). Theeny of these regions is that each one of them contains
points from only a single partition. Given such a space fianiing, then for contact search purposes, we assume that
each subdomain occupies the area consisting of the reetanghtaining its points. For example, in the case of the
“triangle” subdomain, its geometric description will cistsof the (A) and (B) rectangles, whereas for the “square”
subdomain, its corresponding description contains rebean(F), (H), (1), and (J).

Note that this space partitioning is not arbitrary but isaiitd by performing a sequence of recursive bisections
along either thex or they axis. This sequence is depicted in Figure 1(c) using a bitrag; The interior nodes of
this tree represent bisections along a particular poinhefktor y axis and the leaf nodes represent rectangles that
contain only points from a single partition. For example, thot corresponds to the bisection that is performed along
the y-axis at point 4.75. This tree can be also used to locate titangles that a particular poif;, y;) belongs to
by starting from the root and going to the left or to the riglepending on whether or nat or y; satisfies the test
that is depicted at that node. In particular, if the points$igts the test, then it will traverse the left subtree.(the
yesbranch), otherwise it will traverse the right subtrée.(theno branch). These types of trees are extensively used
in the machine learning community, and they are cafledision treeswhereas, the splitting points at each node are
called thedecision hyperplanes

The resulting decision tree can also be used to perform thigagkearch and identify the partitions that contain
contact points with which each surface element can potgntiame in contact with. In that case, the input is the
surface element’s geometry (or a bounding-box approxonatf it), and the global search algorithm will start from
the root of the tree and traverse either the left, right, ahlswanches depending on whether or not the surface element
is on the left, right, or intersects the decision hyperplaimegeneral, the average complexity of each search will be

proportional to the average height of the tree. Since eabti®uain will be in general described by more than one
leaf node, the complexity of the search will tend to be sonawiigher than the complexity of the search required by
ML+RCB. However, since for each surface element, the darcisee based approach identifies a subset of the contact
points stored by a processor that it can come in contact Witk information can be used to speedup the follow up
contact search that is performed by each processor. Thdse#t not significantly affect the overall complexity of
contact search.

Note that the above space partition only focuses on the copténts and it entirely ignores the non-contact points.
As a result, depending on the complexity of the underlyingngetry, contact surfaces, and partitioning, each of these
rectangular boxes may actually contain non-contact p&iats multiple partitions. However, since the contact skarc
involves only surface elements and contact points, this doécreate any correctness or completeness problems.

4.1.1 Constructing the Decision Tree

Our discussion so far has focused on the properties of theegpartitioning obtained by the decision trees but we
have not yet described how the decision tree is obtaineddrittst place. Specifically, the problem that we need to
address is the following. Givenkaway partitioning of a set of points in either 2D or 3D, constra decision tree that
partitions the space into rectangles or boxes each of whiokam points from only one partition. Moreover, since
the decision tree needs to be built in parallel and commigrict all the processors (in order to perform the contact
search), reducing the overall number of nodes in the regpitee is an additional objective that needs to be taken into
account while building the tree.

Fortunately, the problem of building a decision tree that the above characteristics has been extensively studied
by the machine learning community (under the namieesf inductiof) and a number of different heuristic algorithms
have been developed [1, 29]. For our problem, we decidedaahesC4.5 algorithm [30] as it leads to small trees, is
computationally efficient, and as part of our earlier workydr developed efficient and scalable parallel formulations
for it [14].

Given a set of point#\, each belonging to one of thepartitions, the C4.5 algorithm identifies the hyperplare th
bisects the points into two sefs; and A, such that bothA; and A, are aspure as possible. A set is considered to
be completely purgif it contains only points from one of thie partitions. SinceA can contain points from up teo
partitions, it may be impossible to find a bisecting hypemplthat results in botA; and A, being pure. In such cases,
C4.5 tries to find a hyperplane such that the points of eaclobtiee k partitions is assigned primarily to eithég
or Ay. This is usually done by computingsplitting indexthat measures the purity of the resulting bisection, and
selecting the hyperplane that maximizes the value of tldxdnFor our purposes, we used a modified version of the
gini index [1] given by

K k
splitting index=" | Y " |Avil2+ | Y 1A2il% 1)

i=1 i=1
whereAs ; andAy; are the number of points of partitiorthat were assigned to sefg and Ay, respectively. In the
simple case in whiclkk = 2, andA contains an equal number of points from the two partitiohe,dbove function
achieves its maximum value when each set is assigned poanmtse single partition. Analyzing the properties of this
function for a general distribution is beyond the scope of pfaper, and the reader should refer to [1, 30].

Once the best splitting hyperplane has been identified, ig@al set is partitioned intd\; and A, and each set
that contains points from more than one partition is furthgit by applying the same procedure recursively. The
reader should refer to [30] for further details. The compatel complexity for splitting a sef is linear on the size
of the set, assuming that the pointsAnhave been sorted along each one of their dimensions. Thiscause the
algorithm needs to try only each hyperplane that passeseeetsuccessive points along each of the dimensions (a
total of 3 A| possible points), and at each successive point, Equatiam be computed incrementally (1) time.
Also, the required sorting can be done once for the the esgirand maintained by properly splitting the various sets
during the bisection steps.

Y-axis

A
3—T—1a
A" A
2Tl ®
g ®
TTTTTTT T T TTT
1 2 3 4 5 6 7 8 9
X-axis
(a) Partitioning of the space. (b) Associated Decision Tree

Figure 2: An example two-way partitioning of 28 contact points. (a) Shows the description of the various subdomains as a set of
axes parallel rectangles. (b) Shows the underlying decision tree description of these descriptors.

4.2 Computing a Contact-Friendly Multi-Constraint Partit ioning

We partition the mesh using a multi-constraint graph partihg algorithm [16] whose goal is to decompose the
mesh among th& processors such that it balances the computations thaesi@mped during each one of the two
phases. Specifically, I&6 = (V, E) be the nodal graph of the underlying mesh. ugb) = (w1(v), w2(v)) be a
two-element vector assigned to each veiteguch thatw1 (v) is set equal to a value that reflects the (relative) amount
of computation that it performs during the first phase of thkewation, andw,(v) is set to a value that reflects the
(relative) amount of computation that it performs during tontact search phase. In genewgl(v) will be non-zero
whenv corresponds to a contact point, otherwise it will be equaktm. Note that our above weight definitions reflect
the most general case in which the computations associatedhe different nodes are different. In cases in which
this is not true, then all of the non-zero values will be saire.

The above graph model can be further improved by adding weetigtthe different edges. The are two inherently
different types of edges in the above graph. These are (igdges whose incident vertices correspond to contact
points, and (ii) the remaining edges. If a partition cuts dgecof the first type, then it will lead to a communication
step both during the first phase and (in most cases) duringetbend phase of the computation. On the other hand,
cutting edges of the second type will in general lead to comoation only during the first phase. Thus, we can
reduce the overall communication cost by assigning a higlegght to the edges between contact points.

Using this graphs, we can then use the multi-constraint partitioning aldonif16, 32] to obtain th&-way par-
titioning P that balances the two computational phases. In principls,partitioningP can then be given directly
to the decision tree induction algorithm described in $&ctt.1.1 to build the necessary geometric descriptors for
contact search. However, depending on the geometry of thedasies of the various subdomains, the decision tree
induced consistent witR may have a large number of nodes. For instance, consideethisinple case of a two-way
partitioning of a 2D mesh in which the contact points of the subdomains are along a diagonal line, as illustrated
in Figure 2(a). Then, as shown in Figure 2(b), the resultiagision tree will need to compute a fine-grain space
partitioning in order to ensure that each leaf node contagists from only one subdomain. This happens because
there is a miss-match between the geometry of the subdoroaimdaries that decision trees can model concisely and
the geometry produced by the actual partitioning. Sincéstmttrees partition the space by performing axes parallel
bisections, they are ideal for boundaries that consist efgparallel lines or planes, and they are less effective the
further the subdomain boundaries deviate from this model.

For this reason, we developed an algorithm that modifiesitialipartitioning obtained from the traditional multi-
constraint partitioning algorithm to generate a decigiee-friendly partition. We achieve that by inducing a dexcis
tree on the entire set of vertices of the grapé. (both those corresponding to contact points and thosedthabt),
and then using this tree to guide the modification. The dewitiee induction algorithm that we used is similar to
that described in Section 4.1.1 but instead of terminatiegtitee induction when it reaches a pure node, it terminates

when (i) it reaches a node that is pure and contains less thap points, or when (i) it reaches a node that is impure
and contains less than maxoints. The first condition forces the tree induction to aand even for pure tree-nodes
when these nodes contain a large number of points, whereagtiond condition terminates the tree induction when
an impure tree-node has a small number of points.

Now, given this tree, our algorithm computes a new partitignP’ from P, by assigning all the points that are
covered by a particular leaf node to the majority partitidrih@ese points. As a result of this policy, the points that
belong to pure leaf nodes will not change partitions; howetie points that belong to impure leaf nodes may be
assigned to a different partition. By construction, thigeereassignment leads to a partitioningwhose boundaries
consist of piecewise axes-parallel lines or planes. Howd®¥emay not necessarily satisfy the balancing constraints
and as such, it is not an acceptable solution.

To correct this we perform a multi-constrakwvay partitioning refinement operation whose goal is to rfyo
such that the resulting partitid®” does satisfy the constraints. However, in order to ensatestitbdomain boundaries
of P” retain their nice geometric properties, we do not perforat tefinement on the original gra@, but on a much
smaller graphG’ that is obtained by collapsing together all the verticeshging to each leaf-node of the decision
tree into a single vertex. Thus, the refinement algorithm esdsetween partitions these rectangular- or box-shaped
regions, and as a restl’ is guaranteed to retain its nice geometric characterishicge that both the initial multi-
constraint partitioning, the construction 6f, and the multi-constrairt-way partitioning refinement can be done
effectively in parallel [32], and these algorithms are athg available in the latest releaseFRA{RMETS [21].

The max, and max parameters of the above scheme play an important role inndigieg the extent to which
this scheme leads to effective solutions. Specifically, @xmand max are set to very small values, then it will be
relatively easy for the post-refinement step to correct aagdimbalances and lead to high-quality solutions in terms
of the cut. However, the resulting subdomains may consist lafge number of regions, and as such they can still
lead to large decision trees. If mguand/or max is set too high, then it may be difficult for the post-refinemen
algorithm to balance the constraints,@swill contain vertices with high vertex weights€., will correspond to a
large number of vertices @), that cannot be moved for balancing purposes. Moreowvgh, Values of maxmay lead
to an intermediate partitio®’ that significantly violates the balancing constraints aasl & high cut—both of which
will make the post-refinement task quite difficult.

Our experimental study on the sensitivity of our approadhése parameters has shown thatig the total number
of vertices in the graph aridis the number of partitions, then good choices for giand max are within the following
ranges:

n
<maxp§K and =max <

n
ks = kzs K2
Note that the fact that max< max,, does make an intuitive sense, since high values of; rdegrades theé’

partitioning solution both in terms of balance and in terrhsua.

4.3 Updating the Information

A key element of contact/impact simulations is that duringcessive time-steps, as parts of the mesh come in contact
with each other, the position of the nodes in the underlyieginrchange, and depending on the actual characteristics of
the numerical simulation algorithm, some existing eleraeligappear; thus, changing the topology of the underlying
nodal graph. As a result, the partitioning of the mesh andrif@mation used to search for contacts need to be
updated periodically.

Within the context of our algorithm, there are two differavays of performing these updates. One approach will
recompute a multi-constraint partitioning of the graph aatdup the associated geometric subdomain descriptors dur-
ing each time-step of the simulation. To ensure that themdhigh degree of overlap between successive partitionings,
the updated multi-constraint partitioning will be complitesing a multi-constraint repartitioning algorithm [3Zhe
second approach will leave the multi-constraint partitignunchanged but just use the tree-induction algorithm to
compute the new geometric subdomain descriptors that taée@tcount the new location of the contact points.

Figure 3: Various stages of the simulation.

The second approach has the advantage of being faster, @ssitndt perform the multi-constraint partitioning,
and there is no need for dynamic data redistribution in otdexdhere to the new partitioning. Moreover, as long as
the underlying topology and the contact points do not chaingmatically, this approach still ensures that the overall
computation is load-balanced. However, its drawback idfdlbethat as the simulation progresses, the algorithm is
required to build the decision tree on a partitioning whagedemain boundaries are not any more piecewise axes-
parallel lines or plane. As a result, the number of nodeserirtiuced decision tree may increase.

The above discussion suggests that a hybrid approach maywebsptimal choice. That is, in the course of the
simulation, the mesh will be infrequently repartitioneéhgsthe first approach (so that to ensure that the work remains
load-balanced and that the geometry of each subdomainds™niand between these repartitioning steps, it will be
updated by simply inducing a new decision tree on the compiaiots.

5 Experimental Evaluation

We experimentally evaluated the performance of our multistraint-based partitioning algorithm for contact/irpa
computations on a sequence of meshes corresponding tauahmeierical simulation. The simulation corresponds to
a projectile penetration through two plates, as illusttéwe-igure 3. The initial mesh contains 156,601 nodes, A2.,9
elements, 40,512 contact surfaces, and 20,262 contacsndlde simulation was performed using the EPIC code [13]
and required a total of 3,768 time steps to finish. Due to tleive large number of time steps, we instrumented the
code to output the mesh and the associated contact surfacen@iion approximately every 37 time steps, resulting
in a total of 100 successive snapshots of the mesh. We thenthisesequence of meshes to evaluate our algorithm
and compare it against ML+RCB. In order to simplify the preaaéon, we will refer to our approach for partitioning
contact/impact computations as thCML+DT algorithm

MCML+DT has a number of tunable parameters that can affegiatformance. However, due to space constraints,
we only present the results that we obtained by using a ssejlef parameters that was kept constant over all 100
meshes. Specifically, the multi-constraint nodal graph el#ained by setting the various vertex weights to ares, (
we assume that all the mesh nodes and all the contact poirftarpethe same amount of computation during the
first and the second phase of the computation, respectivaig) we set the weights of the edges connecting contact
points to five while we kept the weight of the remaining edgeertie. For updating the contact search information
in successive iterations we followed the approach that kéep partitioning of the mesh fixed but only updates the
geometric descriptors of the various subdomains by induainew decision tree. Finally, the contact search for both
MCML+DT and ML+RCB was performed by approximating each aaef element by its bounding box.

10

MCML+DT Algorithm ML+RCB Algorithm
FEComm| NTNodes| NRemote| FEComm | M2MComm | UpdComm| NRemote
25-way 28101 1206 5103 23961 12205 553 4972
100-way | 65979 2144 9915 59688 12582 1125 11078

Table 1: The performance achieved by the MCML+DT and ML+RCB algorithms for partitioning the sequence of 100 meshes.
These results correspond to averages over the 100 meshes.

5.1 Performance Metrics

We evaluated the performance of MCML+DT and ML+RCB usingdifferent metrics whose meaning is as follows.

FEComm is the total communication volume resulted from partiti@nthe entire mesh and represents the communi-
cation overhead of the first phase of the computations pagdrduring each time-step. Note that for ML+RCB,
we usedVETS’s [15] multilevel algorithm to compute theway partitioning of the mesh.

NTNodes is the total number of nodes in the decision tree induced byyM€DT that is used to obtain the geometric
descriptors of each subdomain. It represents the costtoigeip the contact-search data structures.

NRemote is the total number of surface elements that need to be séme tifferent partitions so that they can be
searched for contact. It represents the communicationtbasis incurred during the global search phase of
contact detection.

M2MComm is the total number of contact points that belong to parigtithat are different from the partitions that
were assigned for the first phase. It represents the comatioriccost associated with mapping information
between the two meshes in the ML+RCB algorithm. Note, in otdensure that the communication overhead
of transferring information between the two partitions isimized as much as possible we used a maximal
weight matching algorithm to optimized the mapping betwinentwo partitions.

UpdComm is the number of contact points that end up being assigneifféoenht partitions as a result of the mesh-
updating strategy used by ML+RCB.

5.2 Results

Table 1 shows the performance of the two algorithms in teritiseodifferent metrics for 25 and 100 partitions. These
values were obtained by averaging the various matricestbeezntire set of 100 meshes.

From these results we can see that the ML+RCB algorithm l&agartitionings whose FEComm cost is smaller
than that of MCML+DT. This should not be surprising, as Kaeiay partitioning computed by MCML+DT has to
balance two different constraints, whereas ML+RCB'’s fgiarting needs to balance only one. However, this savings
in terms of FEComm, comes at the expense of the M2MComm castMh+RCB has to perform but MCML+DT
does not. Since in general, information needs to be traedfieoth from the first to the second partitioning and then
back to the first, the communication cost incurred by ML+RCiB ke twice that of the M2MComm value shown
in the table. Thus, if we take this into account and if we asstinat each communication operation involves data
elements of the same size, ML+RCB requires 72% and 29% manencmication than MCML+DT for the 25- and
100-way partitions, respectively. Note that these figumsespond to comparisons that do not include any contact
search related operations.

Comparing the performance of the two approaches in termseoNRemote metric, we can see that for the 25-
way partitioning, MCML+DT and ML+RCB lead to comparable fsemance, with MCML+DT doing 2.6% worse,
whereas for the 100-way partitioning, the MCML+DT schemgpedorms ML+RCB as the latter needs to commu-
nicate 12% more surface elements. These results suggeM@ML+DT’s approach of describing each subdomain

11

as a set of box-shaped regions is quite effective in elirmganost of the false positive contacts, and that the initial
multi-constraint partitioning was quite effective in reilhg the number of adjacent contact points that span partiti
boundaries.

Finally, comparing the remaining two performance metifitENodes and UpdComm we can see that both of them
increase with the number of processors, but they are relatdmall compared to the other overheads.

6 Conclusions and Directions for Future Research

In this paper we presented a new approach for partitioninggot/impact numerical simulations in the context of par-
allel processing. This approach combines recent advanaesilii-constraint graph partitioning with ideas borrowed
from the machine learning community and leads to an algorittat has a lower communication overhead than the
current state-of-the-art ML+RCB approach. Moreover, itsrall simpler structure makes its incorporation in vasiou
production contact/impact codes easier.

The approach presented in this paper can be improved in aeruhiwvays. We believe that better tree induction
methods can be developed that besides the purity of thetinsehey also take into account how far away the various
contact points are from the decision hyperplane. Spedifidatperplanes that go through a sparsely populated region
of the space or are far away from their nearest points shaulsréferred, as they will tend to reduce the number of
false-positives during contact search. In addition, theettgpment of better geometry-aware multi-constraintipan:
ing algorithm can greatly improve the performance of thigrapch. Finally, before this approach can be incorporated
in simulation codes, a parallel version of it needs to be ldgesl. Fortunately, efficient parallel formulations of the
multi-constraint graph partitioning, multi-constrairgrfitioning refinement, and decision tree induction alyeaxist,
making the parallelization task straightforward.

Acknowledgments

| will like to thank Andrew Johnson from making available t6BIC datasets.

References
[1] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, ahdrfés J. StoneClassification and Regression
Trees Chapman & Hall, New York, 1984.

[2] K. Brown, S. Attaway, S. Plimpton, and B. Hendrickson.rédll strategies for crash and impact simulations.
Computational Methods in Applied Mechanics & Engineeribgs:375-390, 2000.

[3] T. Bui and C. Jones. A heuristic for reducing fill in sparsatrix factorization. In6th SIAM Conf. Parallel
Processing for Scientific Computingages 445-452, 1993.

[4] G. Camacho and M. Ortiz. Adaptive langrangian modelihbailistic penetration of metalic target€omputa-
tional Methods in Applied Mechanical Engineerjrigt7:269-301, 1997.

[5] R. Diekmann, J. Hungershofer, M. Lux, L. Taenzer, and &rwn. Efficient contact search for finite element
analysis. InEuropean Congress on Computational Methods in Appliedn8e®and Engineerin@000.

[6] M. Heinstein, S. Attaway, F. Mello, and J. Swegle. A gaigurpose contact detection algorithm for nonlinear
structural analysis codes. Technical Report SAND92-2$4hdia National Laboratories, 1993.

[7] B. Hendrickson. Graph partitioning and parallel sofzeHas the emperor no clothes? Proc. Irregular’9g,
pages 218-225, 1998.

[8] B. Hendrickson and K. Devine. Dynamic load balancing @amputational mechanic€omputational Methods
in Applied Mechanics & Engineering 84:485-500, 2000.

12

[9] B. Hendrickson and T. Kolda. Graph partitioning modelsgarallel computingParallel Computing (to appear)
2000.

[10] Bruce Hendrickson and Robert Leland. The chaco useiitdeg version 1.0. Technical Report SAND93-2339,
Sandia National Laboratories, 1993.

[11] Bruce Hendrickson and Robert Leland. A multilevel algon for partitioning graphs. Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

[12] C. Hoover, A. DeGroot, J. Maltby, and R. Procassini.d@gn: Dyna3d for massively parallel computers, 1995.
Presentation at Tri-Laboratory engineering ConferencE@mputational Modeling.

[13] G.Johnson, R. Stryk, and S. Beissdker Instructions for the 2001 Version of the EPIC coddiant Techsys-
tems, Inc., Hopkins, Minnesota, April 2001.

[14] M.V. Joshi, G. Karypis, and V. Kumar. ScalParC: A newlabte and efficient parallel classification algorithm
for mining large datasets. Rroc. of the International Parallel Processing Symposid®08.

[15] G. Karypis and V. KumarMEeTS 4.0: Unstructured graph partitioning and sparse matrieiond system. Tech-
nical report, Department of Computer Science, Universitylmnesota, 1998. Available on the WWW at URL
http://www.cs.umn.edu/"metis

[16] G. Karypis and V. Kumar. Multilevel algorithms for misttonstraint graph partitioning. IRProceedings of
Supercomputingl998. Also available on WWW at URL http://www.cs.umn.é#afypis.

[17] G. Karypis and V. Kumar. Multilevel k-way partitioningcheme for irregular graphslournal of Parallel and
Distributed Computing48(1):96-129, 1998. Also available on WWW at URL http:/Anes.umn.edu/ karypis.

[18] G. Karypis and V. Kumar. A parallel algorithm for muéitel graph partitioning and sparse matrix order-
ing. Journal of Parallel and Distributed Computing8(1):71-95, 1998. Also available on WWW at URL
http://www.cs.umn.edu/"karypis. A short version appéatsatl. Parallel Processing Symposium 1996.

[19] G. Karypis and V. Kumar. A fast and highly quality muttilel scheme for partitioning irregular graptslAM
Journal on Scientific Computing0(1), 1999. Also available on WWW at URL http://www.cs nuedu/ karypis.

A short version appears in Intl. Conf. on Parallel Procap4@05.

[20] G. Karypis and V. Kumar. Parallel multilevilway partitioning for irregular graphsSSIAM Review41(2):278—
300, 1999.

[21] G. Karypis, Kirk Schloegel, and V. KumaPARMEIS 3.0: Parallel graph partitioning and sparse matrix ordgrin
library. Technical report, Department of Computer Sciendeiversity of Minnesota, 2002. Available on the
WWW at URL http://www.cs.umn.edu/"metis

[22] George Karypis and Vipin Kumar. A coarse-grain patatialtilevel k-way partitioning algorithm. IfProceed-
ings of the eighth SIAM conference on Parallel Processingtentific Computingl997.

[23] G. Lonsdale, J. Clinckemaillie, S. Vlachoutsis, anddbois. Communication requirements in parallel crash-
wirthiness simulation. IfProceedings of the HPCN 9pages 55-61, 1994.

[24] J. Malone and N. Johnson. A parallel finite element catfitapact algorithms for non-linear explicit transient
analysis: Part Il — parallel implementatioimtl. J. Num. Methods Eng37:591-603, 1994.

[25] B. Monien, R. Preis, and R. Diekmann. Quality matchirmgd docal improvement for multilevel graph-
partitioning. Technical report, University of Paderbat899.

[26] M. Oldenburg and L. Nilsson. The position code algaritfor contact searchinglnternational Journal for
Numerical Methods in Engineering7:359-386, 1994.

[27] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, Gughan, and D. Gardner. Transient dynamics simula-

tions: Parallel algorithms for contact detection and sthedtparticle hydrodynamicslournal of Parallel and
Distributed Computing50:104-122, 1998.

13

[28] A. Pothen. Graph partitioning algorithms with appticas to scientific computing. In D. Keyes, A. Sameh, and
V. Venkatakrishnan, editor®arallel Numerical AlgorithmsKluwer Academic Press, 1996.

[29] J. Ross Quinlan. Induction of decision tre&$achine Learning1:81-106, 1986.
[30] J. Ross QuinlanC4.5: Programs for Machine Learnindg/lorgan Kaufmann, San Mateo, CA, 1993.

[31] K. Schloegel, G. Karypis, and V. Kumar. A new algorithar multi-objective graph partitioning. IRroceedings
of Europar 1999 September 1999.

[32] K. Schloegel, G. Karypis, and V. Kumar. Parallel matiél algorithms for multi-constraint graph partitioning.
In Proceedings of Europar 200@eptember 2000. Distinguished Paper Award.

[33] Kirk Schloegel, George Karypis, and Vipin Kumar. Migirel diffusion algorithms for repartitioning of adaptive
meshesJournal of Parallel and Distributed Computing7(2):109-124, 1997. Also available on WWW at URL
http://www.cs.umn.edu/ karypis.

[34] Kirk Schloegel, George Karypis, and Vipin Kumar. Gragpdrtitioning for high-performance scientific simula-
tions. In Jack Dongara, lan Foster, Geoffrey Fox, Williano@r, Ken Kennedy, Linda Torczon, and Andy White,
editors,CRPC PArallel Computing Handbopkhapter 18, pages 491-541. Morgan Kaufmann, San Francisco
CA, 2002.

[35] C. Walshaw and M. Cross. Parallel optimisation aldoris for multilevel mesh partitioning. Technical Report
99/IM/44, University of Greenwich, London, UK, 1999.

[36] Z. Zhong and L. Nilsson. A contact searching algorittongeneral contact problem&€omp. & Struct.33:197—
209, 1989.

14

